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Abstract—Multi-sensor data fusion is crucial for modern au-
tonomous systems to accurately perceive their surrounding en-
vironments and make intelligent decisions. However, as different
sensor sources may have significant time disparity, it is necessary
to synchronize their data before sending them to the fusion
algorithm, in order to control such differences and get meaningful
fusion results. This paper discusses the message synchronization
policy in ROS, a popular framework for robotic systems. The
ROS message synchronization policy has proven to be highly
effective in reducing the time disparity, but it introduces a certain
level of latency. Therefore, to use it for real-time systems, it is
essential to establish an upper bound for the worst-case latency
that may occur. Specifically, we analyze two key latency metrics of
the ROS message synchronization policy, the passing latency and
reaction latency, which are needed to analyze the end-to-end delay
and reaction time on the system level. We conduct experiments
under different settings to evaluate the precision of our proposed
latency upper bounds against the maximum observed latency in
real execution.

I. INTRODUCTION

Multi-sensor data fusion plays a crucial role in the oper-

ation of modern autonomous systems, including autonomous

vehicles, robots, and drones. By using this technology, these

systems are empowered to perceive and interpret their sur-

rounding physical environment accurately. This capability en-

ables them to make intelligent decisions and execute complex

tasks with precision and reliability. However, in practice, the

sensor data obtained from different sources may not have

perfectly aligned sampling time, and they may experience

varying delays before reaching the fusion algorithm [1], [2].

Consequently, the input data from these diverse sensor sources

can exhibit significant time disparity, which indicates the time

difference between their actual sampling instances [3]. If the

time disparity is substantial, the fusion results may lose their

usefulness or even become completely meaningless. Therefore,

it is important to synchronize the data from different sensor

sources before transmitting them to the fusion algorithm to

manage the time disparity.

In this paper, we examine the message synchronization pol-

icy in ROS (Robotic Operating System) [4]–[6], a widely used

software framework for developing robotic systems. With its

extensive adoption by countless developers, ROS has powered

a diverse range of robots and autonomous systems. Recent

research [3], [7] has demonstrated excellent performance of

ROS’s message synchronization policy in terms of minimizing

time disparity and outperforms its competitors, such as the one

employed by Apollo Cyber RT [8]. Especially, The message

synchronization policy used in ROS-based applications, such

as Autoware [9], has proven effective and could be adopted in

other systems.

While the ROS message synchronization policy effectively

mitigates time disparity, it introduces a trade-off in the form

of latency. This latency arises from the temporary buffering

of messages until they can be grouped with others that share

similar sampling times, which is the key to reducing the overall

time disparity. The incurred latency plays a significant role in

affecting the timing behavior of ROS applications. To ensure

the applicability of the ROS message synchronization policy

in real-time systems, it is crucial to quantify the extent of this

latency and, more importantly, establish a safe upper bound

for its worst-case scenario. However, the challenge lies in

the absence of a definitive solution for bounding the worst-

case latency resulting from the ROS message synchronization

policy. Addressing this issue is the goal of this paper.

In this study, we examine two types of latency metrics

associated with the ROS message synchronization policy,

namely, the passing latency and the reaction latency. The

passing latency refers to the time gap between the time when a

message arrives and when it leaves the message synchronizer.

This metric is useful in determining the end-to-end delay for

sensor data going through the processing pipeline. Reaction

latency, on the other hand, considers both the passing latency

of a message and the time delay resulting from discarded

messages preceding it. This metric is crucial in calculating

another important system-level real-time performance metric,

i.e., end-to-end reaction time [10]–[14]. Section II will provide

a detailed explanation of the passing and reaction latency and

how they relate to end-to-end delay and reaction time.

We conduct experiments under different settings, including

the different number of channels, the varied data sampling

periods, and the random delay time experienced by messages

before arriving at the synchronization policy, to evaluate the

precision of our proposed latency upper bounds against the

maximum observed latency in real execution.

185

2023 IEEE Real-Time Systems Symposium (RTSS)

2576-3172/23/$31.00 ©2023 IEEE
DOI 10.1109/RTSS59052.2023.00025



...

...

Message 
Synchronizer

... ...

We focus on the 
latency analysis of 

this component.
Sensor

... ...

Task

Fig. 1: A system example with a message synchronizer.

II. PROBLEM DEFINITION

A. System Model

The ROS message synchronizer, called synchronizer for

short, is a software component to synchronize messages from

different sensor sources before sending them to the data fusion

component (as shown in Fig. 1). The synchronizer has N

input channels and 1 output channel. Each input channel of

the synchronizer has a buffer queue Qi to temporally store

messages arrived at this channel. We assume that each queue

Qi is sufficiently long. This assumption does not pose any

limitation to our study since there is a known upper bound of

the size of each queue in ROS message synchronizer, by which

we can easily set a proper queue size to meet this assumption

[3]. For simplicity of presentation, we also use Qi to refer to

the i-th input channel of the Message Synchronizer, when it is

unambiguous from the context. The synchronizer selects one

message from each input channel and combines them into an

output message set according to some policy, which is released

to the output channel. We will introduce the policy used by

the ROS message synchronizer in Section III.

We use mk
i to represent the k-th message currently in queue

Qi. Also, we use m
ρ(i)
i

1 to denote the ρ(i)-th message among

all the messages coming from the i-th input channel. It is worth

noting that the difference between the notations mk
i and m

ρ(i)
i

is that mk
i only represents the message that currently in Qi,

while m
ρ(i)
i denotes the message currently in Qi or the one

that has already been discarded from Qi, which considers the

total number of messages from the i-th input channel. For

simplicity, sometimes we also use mi to represent a message

in Qi when there is no need to specify which message it is

exactly. Each message mk
i has two key timing characteristics:

• τ(mk
i ), the timestamp of mk

i , which is the time point

when the sensor data carried by mk
i was sampled2.

• α(mk
i ), the arrival time of mk

i , which is the time point

when the mk
i arrives at the synchronizer.

In general, τ(mk
i ) is smaller than α(mk

i ), since a message may

experience some delay before arriving at the synchronizer due

to, e.g., processing or transmission. We also assume that the

1ρ can be a function whose specific form is not important in our context,

as we do not require the specification of which message m
ρ(i)
i

is.
2A message may pass through several processing tasks (callbacks in ROS)

before reaching the synchronizer. In reality, a callback “consumes” an input
message and “produces” an output message that inherits the timestamp of
the input message. To simplify our abstract model and focus on the problem
under study, we omit details about callbacks consuming input messages and
producing output messages, and instead consider that the initial message goes
through all processing tasks and eventually reaches the synchronizer.

messages in each channel arrive at the synchronizer in the

same order as their timestamps.

We do not assume to know the exact τ(mk
i ) and α(mk

i ) of

each message mk
i . Instead, we assume to know the following

timing parameters for messages in each channel Qi:

• The minimum and maximum time difference between the

timestamps of two consecutive messages in Qi, denoted

by TB
i and TW

i . We have ∀k:

TB
i ≤ τ(mk+1

i )− τ(mk
i ) ≤ TW

i

• The minimum and maximum delay experienced by each

message in Qi, denoted by DB
i and DW

i . We have ∀k:

DB
i ≤ α(mk

i )− τ(mk
i ) ≤ DW

i

The value of TB
i and TW

i are decided by the corresponding

sensor’s sampling rate. In some cases, the sensor data are

sampled in a strictly periodic manner, which is a special case

of our model where TB
i = TW

i . However, in reality, sensor

data sampling is typically not perfectly periodic and can suffer

from jitters due to numerous reasons such as software and

hardware limitations [15]. Therefore, in this work, we presume

the general case in which TB
i and TW

i may be different.

DB
i and DW

i refer to the processing and transmission delays

experienced by a message before it reaches the synchronizer.

For instance, a message is processed by a processing task (such

as a callback in ROS) before it arrives at the synchronizer,

then DB
i (DW

i ) represents the best-case (worst-case) response

time of this processing task plus the best-case (worst-case)

transmission delay, i.e., the time between the completion of

this task and the arrival of the corresponding message at

the synchronizer. Response time analysis for real-time tasks

is well-studied in existing real-time scheduling theory. There

are many mature techniques to bound the best/worst-case

response times under many different settings, including those

based on the ROS executor and its variance [16]–[24]. And,

transmission delay can also be theoretically analyzed [25]–[27]

or pragmatically measured. Therefore, in this paper, we will

not further explore how to estimate DB
i and DW

i in various

system settings but focus on the new challenge we face in this

work, i.e., analyzing the latency incurred by the synchronizer

given known DB
i and DW

i estimations.

B. Passing Latency and Reaction Latency

We aim to analyze two types of latency metrics for the

synchronizer, the passing latency and the reaction latency.

Definition 1 (Passing Latency). If a message m
ρ(i)
i is selected

into an output message set published at time tf , the passing

latency of m
ρ(i)
i is defined as tf − α(m

ρ(i)
i ).

In the synchronizer, not all received messages can be

selected into the output message sets. Before a message is

selected into an output message set, there is a possibility of

discarding certain messages.

Definition 2 (Reaction Latency). If a message m
ρ(i)
i is

selected into an output message set published at time tf , and
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m
ρ(i)−x
i (x ∈ N+) is the last message before m

ρ(i)
i that was

selected into an output message set, the reaction latency of

m
ρ(i)
i is defined as tf − α(m

ρ(i)−x
i ).

The worst-case passing latency of a message channel is the

maximum passing latency of among messages in this channel

that are selected into output message sets. Similarly, the worst-

case reaction latency of a message channel is the maximum

reaction latency among all messages in this channel that are

selected into output message sets.

Briefly speaking, the difference between passing latency

and reaction latency is that the reaction latency includes

both the passing latency and the extra latency caused by the

discarded messages. As a special case, if no messages have

been discarded in a channel, then the passing latency and

reaction latency are identical for messages in this channel.

The passing latency is useful to track the end-to-end delay

for the information carried by a message to traverse the entire

processing system. For example, suppose a message is selected

into an output message set by the synchronizer, which is

further sent to the downstream fusion task and eventually

generates a control signal to the actuator. By tracking the

end-to-end delay for the message leading to each control

signal, we can assess the staleness of status information relied

upon by the control signal. This information is crucial for

designing proper measures to compensate for this staleness

when generating the control command.

The reaction latency is useful to calculate the end-to-end

reaction time of the system regarding a sensor source. Loosely

speaking, the reaction time of a processing pipeline is the

time for it to react to an external event. The reaction latency

associated with the synchronizer is caused by discarding

messages and waiting for messages from separate channels

to synchronize. For example, suppose a system consisting of

two sensors for data sampling. Suppose one of these sensors

experiences an extended sampling period. In that case, the

synchronizer will have to wait for the messages from this

sensor to arrive, despite already having received messages

from the other sensor. This metric is essential for measuring

a system’s reaction time to external events. We will use the

following example to illustrate the passing latency and reaction

latency, as well their relationships with the end-to-end delay

and reaction time.

C. An Illustrative Example

We use Fig. 2 to illustrate the passing and reaction latency,

as well as their relationship with the end-to-end delay and end-

to-end reaction time. Fig. 2-(a) depicts a system comprising

two tasks for sampling sensor data, a synchronizer, a data

fusion task, and an actuator task. For ease of presentation, we

suppose that each task, including the synchronizer, is executed

on a dedicated processor without any interference, and there

is no communication delay between any two tasks. Suppose

that TB
1 = TW

1 = 6 and TB
2 = TW

2 = 20. Moreover, we

set the worst-case execution time of sensor task 1, sensor

task 2, data fusion task, and actuator task as 1, 4, 2, and 2,

Synchronizer

Sensor 1

Sensor 2

Fusion Actuator

(a)

(b)

Fig. 2: Illustration of the passing and reaction latency. (a) A

system includes two sensor data sampling tasks, a synchro-

nizer, a data fusion task, and an actuator task. (b) An execution

sequence example illustrating the relationship between the

passing latency (and reaction latency) we focus on and the

end-to-end delay (and the end-to-end reaction time). The

dark upward arrows indicate the arrivals of messages sampled

before the occurrence of event B that occurs right after time

0, and the red upward arrows denote the arrivals of messages

that identify event B.

respectively. And the time required for the synchronizer to

choose an output message set is negligible and has been set

to 0. Accordingly, Fig. 2-(b) illustrates the execution sequence

of the system shown in Fig. 2. Upon completion of execution

of sensor task 1 or 2, the corresponding message is sent to the

synchronizer. Fig. 2-(b), the synchronizer is represented by

two channels to demonstrate the received messages from the

sensor task 1 and 2. Once an output message set is selected,

the synchronizer sends the message set (which comprises two

messages, each from one of the channels) to the fusion task.

At time 1, a message sent by sensor task 1 arrives at the

synchronizer. At time 4, the synchronizer receives a message

sent by sensor task 2, and it combines this message with

the one from channel 1 as an output message set, which is

sent to the fusion task at time 4. After processing, the fusion

task sends the message to the actuator task, which completes

execution at time 8. Right after time 0, an external event B

occurs, which is first captured by sensor 1 at time 6. And

then, three messages, which were published by sensor task

1 identifying event B, arrive at the synchronizer at time 7,

13, and 19, respectively. As no new messages are received

from channel 2, these three messages are buffered, awaiting

messages from channel 2. At time 24, a new message sent

by sensor task 2 arrives. At the same time, the synchronizer
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combines it together with the message, which arrives at time

19 into an output message set, which is sent to the fusion task.

Then, the fusion task sends the message to the actuator task

at time 26, and the actuator task finishes its execution at time

28. Note that the messages arriving at time 7 and 13 will be

discarded and not included in any output message sets.

In this example, the passing latency of the message arriving

at time 19 caused by the synchronizer is the time difference

between its arrival at time 19 and the publishing of the output

message set at time 24, i.e., 24− 19 = 5. The corresponding

end-to-end delay is the duration from the start time of sensor

task 1 at time 18 to the completion of the actuator task at

time 28, i.e., 28−18 = 10, which includes the passing latency

from time 19 to 24. The reaction latency is the time duration

from the arrival of the message at time 1 to the publishing of

the output message set at time 24, i.e., 24 − 1 = 23, which

includes the passing latency and the extra latency caused by

the discarded messages. And the corresponding end-to-end

reaction time is the time duration from the occurrence of event

B at time 0 to the completion of the actuator task at time 28,

i.e., 28 − 0 = 28, which includes the reaction latency from

time 1 to 24.

It is worth mentioning that the reaction latency of the syn-

chronizer is defined regarding the arrival time of the last non-

discarded message but not the occurrence time of the external

event, which seems problematic. For example, if an external

event A occurs at time 10, then the end-to-end reaction time

regarding this event should be 28 − 10 = 18. However, by

our definition, the reaction latency of the synchronizer is

24−1 = 23, which is larger than the end-to-end reaction time

28−10 = 18. This is actually not a problem as our interest is

to analyze the worst-case end-to-end reaction time no matter

when the event actually occurs. The worst-case scenario is

that the external event happens right after the sampling time

of the last non-discarded message (event B in Fig. 2-(b)).

Therefore, the worst-case time gap between the occurrence of

event B and the generation of the first output message group

containing the information of event B (24−0 in this example)

equals the sum of two parts (1) the difference between the

timestamp of the last non-discarded message and its arrival

time to the synchronizer (1 − 0 in this example) and (2) the

reaction latency (24 − 1 in this example). The former can

be bounded using existing response time analysis techniques,

while analyzing the latter is the goal of this paper. In summary,

we define the reaction latency of the synchronizer assuming

the worst-case scenario, i.e., the external event occurs right

after the sampling time of the last non-discarded message. In

this way, the definition of the reaction latency is simple yet

sufficient to serve the purpose of bounding the worst-case end-

to-end reaction time.

III. ROS MESSAGE SYNCHRONIZATION POLICY

There are two synchronization policies in ROS, i.e., the

Exact Time policy [28] and the Approximate Time policy [29].

The Exact Time policy only combines messages from different

input channels with exactly the same timestamp into an output

set and discards any messages without an exact match. As a

result, any output message set published under the Exact Time

policy will have a time disparity of 0. However, in reality, it

is too restrictive to require data from different sensors to have

exactly the same timestamp, so the Exact Time policy is rarely

used in practice. Consequently, we focus on the Approximate

Time policy in this paper, which is used to combine messages

under a certain tolerance of time disparity. Please note that

the model and results of this paper apply to both ROS 1

(the first generation of ROS) and ROS 2. More specifically,

the Approximate Time policy is the same for all ROS 1 C++

versions since Diamondback and ROS 2 C++ versions until

the latest Rolling, which was also stated in [3]. For the sake

of brevity, we use the term “ROS” in this paper to include both

ROS 1 and ROS 2. Throughout the remainder of this paper,

we will use the term “policy” or “synchronization policy”

interchangeably to represent the Approximate Time policy. In

this paper, we adopt the abstract model presented in [3], but

to keep our paper self-contained, we will provide a detailed

explanation of this model in its entirety. We first define some

concepts, followed by the abstract policy model.

We use S = {m1, ...,mN} to denote a regular set contain-

ing N messages, each of which comes from a different queue.

The time disparity of a regular set is defined as:

Definition 3 (Time Disparity). Let S = {m1, ...,mN} be a

regular set. The time disparity of S, denoted by Δ(S), is the

maximum difference between the timestamps of the messages

in S, i.e.,

Δ(S) = max
mi∈S

{τ(mi)} − min
mj∈S

{τ(mj)}

Each queue Qi stores not only messages that are already

arrived (called arrived messages), but also an artificial pre-

dicted message at the end of Qi. The timestamp of a predicted

message is set based on the timestamp of the latest arrived

message in Qi and TB
i . It is important to note that the selection

procedure of the output message set is not solely based on the

arrived messages but also considers the predicted messages,

which can provide auxiliary information for the selection

procedure. Nevertheless, a predicted message is never included

in output message sets. Suppose there are currently k messages

{m1
i , ...,m

k
i } in Qi, mk

i must be a predicted message and

m1
i , ...,m

k−1
i are all arrived messages. The timestamp of mk

i

is set to be

τ(mk
i ) = τ(mk−1

i ) + TB
i

When the system starts at time 0, a predicted message with

timestamp 0 was initially put into each queue. Note that

sometime a queue may only have a predicted message but

no arrived message.

Definition 4 (Pivot). Let S1 = {m1
1, ...,m

1
N}, where each

m1
i is the arrived message with the earliest timestamp in Qi.

The pivot mP is the one with the largest timestamp among all

elements in S1. If several messages in S1 all have the latest

timestamp, the message with the maximum queue number is

the pivot.
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The queue to which the pivot belongs is denoted as the

pivot queue, while the remaining queues are denoted as the

non-pivot queues. We use Λ to denote all the regular sets

corresponding to the pivot mP. Note that the regular sets in

Λ consist of messages currently in queues (either arrived or

predicted) and must include mP. The selected set has the

smallest time disparity among all regular sets in Λ.

Definition 5 (Selected Set). Let mP be a pivot and Λ be the

corresponding set of the regular sets that include mP. The

selected set is the set that has the smallest time disparity

among all elements in Λ. If multiple elements in Λ all have

the smallest time disparity, the selected set S = {m1, ...,mN}
must satisfy the following condition: there does not exist

another regular set S′ = {m′1, ...,m
′
N} in Λ s.t. (i) Δ(S′) =

Δ(S) and (ii) ∃mi ∈ S : τ(m′i) < τ(mi).

A selected set can include both arrived messages and pre-

dicted messages. We call a selected set containing only arrived

messages a published set (denoted as SPUB). The messages in

a published set are called published messages. If the selected

set contains any predicted messages, the synchronizer must

wait for them to arrive. Intuitively, the predicted message(s)

can be used to combine a regular set with a smaller time

disparity compared with the current selected set. However,

in the case of TW
i > TB

i , a message may arrive with a

larger timestamp than predicted. If the difference between

the actual and predicted timestamp is significant, the message

cannot be included in a selected set as expected. Therefore,

the synchronizer can waste some time waiting for messages

to arrive, further contributing to passing latency or reaction

latency. The insight here is that if the predicted timestamp is

too large (e.g., the difference between the predicted timestamp

and the timestamp of the pivot exceeds the worst-case time

disparity of the published set), the synchronizer does not need

to wait for the predicted message, thereby to avoid wasting

time. We will explain more about the above insights as well as

the aspects relevant to the passing latency and reaction latency

with an illustrative example in Section III-B.

A. Synchronization Policy

When a new message mi arrives, the synchronizer will in-

voke Algorithm 1. First, the last message (must be a predicted

message) is discarded from Qi (Line 1). Then, mi is put into

the end of Qi, which then is followed by a new predicted

message with timestamp τ(mi)+TB
i (Line 2-3). After that, the

pivot is set (Line 5) once there is at least one arrived message

in each queue. And a selected set can only be obtained (Line

7) if all predicted messages have timestamps greater than

τ(mP). If the selected set only contains arrived messages,

it will be published and all published messages should be

discarded from the queues. Additionally, the messages earlier

than the published messages will also be discarded from the

queues, which are not included in any published sets (Line

8-11). Otherwise, if a selected set contains one or several

predicted messages, Algorithm 1 exits immediately to wait

for the predicted message(s) to arrive.

Algorithm 1: Synchronization Policy

Input: the newly arrived message mi

1 discard the last message in Qi;

2 put mi to the end of Qi;

3 generate a predicted message with timestamp

τ(mi) + TB
i and put it to the end of Qi ;

4 while each queue has at least one arrived message do

5 mP ← the current pivot (Definition 4);

6 if all predicted messages’ timestamps > τ(mP)
then

7 S ← the selected set (Definition 5) ;

8 if all messages in S are arrived messages then

9 publish S;

10 for each mj ∈ S do

11 discard mj and all messages before mj

in the corresponding Qj ;

12 else

13 return;

14 else

15 return;

16 return;

We assume that the time required by Algorithm 1 to identify

a selected set is negligible, i.e., it is considered to be 0. This

assumption is made to simplify our analysis and to focus

solely on the latency caused by waiting for messages to arrive

and also the discarded messages. Furthermore, we use Δ to

represent the upper bound of time disparity for any published

set, which is equal to the RHS of (12) in [3].

B. An Illustrative Example

We use Fig. 3 to illustrate Algorithm 1. The x-axis repre-

sents the timestamp and the messages’ arrival time is not ex-

plicitly depicted in the figure. The downward arrows represent

the messages buffered in the queues. TB
1 = 3, TB

2 = 5, TB
3 = 10

and TW
1 = TW

2 = TW
3 = +∞.

At some time point, a message with timestamp 0 arrives in

Q3 and is set as the pivot as shown in Fig. 3-(a). The message

set {m1
1,m

1
2,m

1
3} in Fig. 3-(a) is the first published set and

the corresponding published messages will be discarded from

the queues. Then, a message with timestamp 10 arrives at Q3,

which is set as the new pivot as shown in Fig. 3-(b). Please

note that the indexes of messages are automatically updated in

Algorithm 1 after discarding messages. For example, from Fig.

2-(a) to Fig. 2-(b), the notation of the message with timestamp

of 3 in Q1 is updated from m2
1 to m1

1 after m1
1 with timestamp

0 is discarded.

The regular set {m3
1,m

2
2,m

1
3} in Fig. 3-(b) has the min-

imum time disparity, so it is the selected set. However, it

cannot be published since m2
2 is a predicted message. So the

synchronizer will wait for m2
2 to arrive. At some later point,

m4
1 and m2

2 arrive successively as illustrated in Fig. 3-(c). Then

the selected set {m3
1,m

2
2,m

1
3} in Fig. 3-(c) will be published
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Fig. 3: An example illustrating the synchronization policy, where the x-axis represents the timestamp not the elapsed time.

Each selected set is contained in the red dotted box.

since it only contains arrived messages. Furthermore, in Fig.

3-(c), it can be observed that m3
1 arrived in Q1 quite some

time ago; however, it still had to wait for the arrival of both

m2
2 and m1

3, resulting in a passing latency for m3
1 until it

could be published. Meanwhile, the messages m1
1 and m2

1 in

Q1 are not included in any published set, leading to an extra

latency, which is part of the reaction latency for m3
1 until it is

published.

At some point, the queue status is shown in Fig. 3-(d), and

m1
3 is the pivot. The regular set {m3

1,m
2
2,m

1
3} in Fig. 3-(d)

is the selected set with two predicted messages m3
1 and m2

2,

so the synchronizer will wait for them to arrive. However, m3
1

arrives with a timestamp 31, which is larger than predicted

(i.e., 21 in this case) as shown in Fig. 3-(e). The regular set

{m2
1,m

2
2,m

1
3} in Fig. 3-(e) is the selected set, so it will be

published. In this case, m3
1 arrives with a timestamp larger than

predicted and is not included in the selected set, which further

increases the passing latency and reaction latency (we will

further discuss this in Section IV) for the published message

m2
1 in Fig. 3-(e).

IV. PASSING LATENCY UPPER BOUND ANALYSIS

In this section, we present the derivation of the upper bound

of the passing latency for a published message m
ρ(i)
i in Qi

(i ∈ [1, N ]), which is included in a published set SPUB.

A. Passing Latency Analysis

According to Definition 1, we should upper bound the

publishing time tf for the published set SPUB.

Lemma 1. Let SPUB be the published set published at time

tf . tf must be the arrival time of a message.

Proof. Once a new message from any channel arrives, the

synchronizer will invoke Algorithm 1. Recall that we assume

the time for Algorithm 1 to find a published set is 0. Hence, the

publishing time of a published set must be equal to the arrival

time of the message that triggers the execution of Algorithm

1. The lemma is proved.

Definition 6 (Latest Arrived Message). Let SPUB be the

published set. The latest arrived message mL ∈ SPUB is the

one with the latest arrival time among all messages in SPUB,

i.e., ∀m ∈ SPUB: α(mL) ≥ α(m). Without loss of generality,

let mL come from Ql (l ∈ [1, N ]).

Intuitively, the Algorithm 1 is expected to publish a pub-

lished set upon the arrival of the latest arrived message.

However, this is not always the case due to the utilization of

predicted messages. Predicted messages can offer additional

information during the selection process, thereby affecting the

final publishing time of the published set. The insight is that

the greater the difference between TB
i and TW

i , the longer

the potential waiting time for the predicted message to arrive

until the publishing time. Therefore, when a predicted message

arrives with a later timestamp than predicted, it is possible that

Algorithm 1 would not obtain a better selected set as expected.

Consequently, the predicted message can further increase the

passing latency.

Below, we first prove that the publishing time of a published

set can be later than the arrival of the latest arrived message.

Lemma 2. Let SPUB be the published set returned by Al-

gorithm 1 at time tf , and mL ∈ SPUB be the latest arrived

message. Then, tf ≥ α(mL) must hold.

Proof. We prove this by contradiction, assuming tf < α(mL).
According to Lemma 1, tf must be the arrival time of a

message m ∈ SPUB, i.e., tf = α(m). Hence, α(m) < α(mL)
and mL has not yet been received at time tf . Therefore, it is

not possible to publish SPUB at tf . This contradicts the fact

that SPUB is published at tf . So, tf ≥ α(mL) must hold.

Lemma 2 provides a lower bound for tf . In the case of

tf > α(mL), a message arrives at tf and then the published

set is published. However, this message is not included in this

published set. To upper-bound the publishing time tf , we first

introduce the earliest stable time, which indicates the earliest

time that each non-pivot queue contains at least one arrived

message with a timestamp larger than the pivot.

Definition 7 (Earliest Stable Time). Let SPUB be the pub-

lished set and mP be the corresponding pivot. The earliest
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Fig. 4: Illustration of the earliest stable time.

stable time t∗ is the earliest time at which each non-pivot

queue contains at least one arrived message with a timestamp

larger than τ(mP).

If the pivot mP arrives after all those messages with

timestamp greater than τ(mP), the earliest stable time is

t∗ = α(mP).

According to the definition of t∗, it must be the arrival time

of a message arriving at the queue. Let m∗e denote the message

arriving in Qe (e ∈ [1, N ]) at time t∗, i.e., α(m∗e) = t∗. As

an example, in Fig. 4, suppose α(m2
2) > α(m3

1) > α(m1
3),

the earliest stable time is t∗ = α(m2
2). If α(m1

3) > α(m2
2)

and α(m1
3) > α(m3

1), the earliest stable time would be t∗ =
α(m1

3).

Following lemma proves that the worst-case publishing time

tf can not be later than the earliest stable time t∗.

Lemma 3. For the published set SPUB, let mP be the pivot,

tf be the publishing time, and t∗ be the earliest stable time,

then tf ≤ t∗ must hold.

Proof. We prove this by contradiction, assuming tf > t∗. By

the definition of t∗, the while-condition in Line 4 and the if-

condition in Line 6 in Algorithm 1 are both true. At time

t∗, there must exist a selected set S returned from Line 7

of Algorithm 1. Since SPUB is not published at t∗, S must

not be SPUB. Since each non-pivot queue at least contains

an arrived message with a timestamp later than τ(mP), the

predicted message in each queue must be “further away” from

mP than this arrived message. Therefore, S does not contain

any predicted message and it must be a published set. As the

same arrived message cannot be included in two published

sets, mP is not in S. Hence, for the pivot queue, S includes

a message after mP (note that mP is the message with the

earliest timestamp in the pivot queue). After S is published, all

messages before the published message in S are discarded, and

in particular, mP is discarded, which contradicts that mP is in

SPUB which is published after t∗. Therefore, the assumption is

incorrect. SPUB is published no later than t∗, i.e., tf ≤ t∗.

Lemma 4. Let SPUB be any arbitrary published set, and

mP ∈ SPUB be the pivot. If m∗e is the message arrives at t∗,

then τ(m∗e) ≤ τ(mP) + TW
e holds.

Proof. By the definition of t∗, m∗e can be the first arrived

message in Qe with timestamp larger than τ(mP) or m∗e
is exactly mP. If m∗e is mP, the lemma is obviously true.

Otherwise, the last message before m∗e in Qe has the maximum

timestamp value equal to τ(mP) (since m∗e is the first message

with a timestamp later than τ(mP)). Hence, we must have

τ(m∗e) ≤ τ(mP) + TW
e . The lemma can be proved.

Recall that we use Δ to denote the upper bound of time

disparity for any published set, which is equal to the RHS of

(12) in [3], i.e.,

Δ = max
2≤n≤N

⎧⎨
⎩

1

n

∑
n−1 largest

TW
j

⎫⎬
⎭

Theorem 1 (Passing Latency Upper Bound 1). Let SPUB be

any arbitrary published set. The passing latency experienced

by m
ρ(i)
i ∈ SPUB is upper-bounded by

Δ+M−DB
i where M = max

j∈[1,N ]

{
TW
j +DW

j

}
(1)

Proof. By (1), Lemma 3, and Lemma 4, we have

tf − α(m
ρ(i)
i ) ≤ t∗ − α(m

ρ(i)
i ) = α(m∗e)− α(m

ρ(i)
i )

≤ (τ(m∗e) +DW
e )− (τ(m

ρ(i)
i ) +DB

i )

= (τ(mP)− τ(m
ρ(i)
i )) + (τ(m∗e)− τ(mP)) +DW

e −DB
i

≤ Δ+ (TW
e +DW

e )−DB
i ≤ Δ+M−DB

i

The theorem is proved.

The above upper bound in Theorem 1 could be pessimistic.

The pessimism mainly comes from the term M in inequality

(1). The insight here is that not all predicted messages with

timestamps later than τ(mP) will be waited to arrive. First,

by Lemma 3, we know that the published set SPUB must be

published no later than t∗. In other words, before publishing

SPUB, the synchronizer will only wait at least one predicted

message with a timestamp later than τ(mP) to arrive in each

queue. The above analysis considers the worst-case publishing

time, in which case at least one predicted message with a

timestamp later than τ(mP) should arrive in each queue.

According to the generation of the predicted message, we

know that the timestamp of a predicted message in Qj is

generated based on the minimum timestamp difference TB
j .

When TB
j is too large, the difference between the timestamp

of the pivot and the predicted message would exceed Δ. In this

case, Algorithm 1 should not wait for this predicted message

to arrive, since for the pivot mP any selected set including this

predicted message must have a time disparity larger than Δ
(note that the time disparity of the published set for any pivot

mP is at most Δ).

According to these observations, it is possible to add certain

constraints on the term M in terms of TB
j to mitigate the

degree of pessimism, which allows us to enhance the accuracy

of the computation for the upper bound on the passing latency.

The following section will explain more clearly with an

example and introduce a more optimistic upper bound for the

passing latency.
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B. The Second Upper Bound for Passing Latency

Below, we derive the second upper bound for the passing

latency by dividing the published set SPUB into three cases3:

• Case 1: all published messages in SPUB from non-pivot

queues have timestamp later than τ(mP).
• Case 2: all published messages in SPUB from non-pivot

queues have timestamp earlier than τ(mP).
• Case 3: some published messages in SPUB have times-

tamp earlier than τ(mP), while others’ timestamp is later

than τ(mP).

We begin by demonstrating that in Case 1, the term M
in inequality (1) can be simplified to only account for the

delay element DW
j , without the need to consider the minimal

timestamp difference element TW
j .

Lemma 5. Let SPUB be any arbitrary published set and mP ∈
SPUB be the pivot. If SPUB falls into Case 1, the passing

latency experienced by m
ρ(i)
i ∈ SPUB is upper-bounded by

U1
p = Δ+M1 −DB

i , where M1 = max
j∈[1,N ]

{
DW

j

}
(2)

Proof. The published message in each non-pivot queue must

be the first message with a timestamp later than τ(mP). When

the latest arrived message mL ∈ SPUB arrives, a selected set

can be obtained from Line 7 in Algorithm 1. This selected

set does not contain any predicted messages and must be the

published set SPUB. So we have tf = α(mL). Since both

mL and mP are included in SPUB, we can have τ(mL) ≤

τ(mP) +Δ. In the worst-case, m
ρ(i)
i can be mP. So, we have

tf − α(m
ρ(i)
i ) = α(mL)− α(m

ρ(i)
i )

≤ (τ(mL) +DW
l )− (τ(m

ρ(i)
i ) +DB

i )

≤ τ(mL)− τ(mP) +DW
l −DB

i

≤ Δ+DW
l −DB

i ≤ Δ+M1 −DB
i

The lemma is proved.

The key insight learned from Lemma 5 is that in Case

1, the latest arrived message is precisely the last one that

Algorithm 1 should wait for, leading to the published set

being obtained at the time tf = α(mL). In this case, the

algorithm only needs to wait for all published messages

included in the published set to arrive. However, in Case

2 or Case 3, there is a possibility that Algorithm 1 may

need to wait for additional messages to arrive, even if the

latest arrived message mL has already been arrived (i.e., all

published messages have already arrived). More specifically,

certain predicted messages have the potential to be included

a selected set with a smaller time disparity. If these messages

arrive with the predicted timestamps, the time disparity of the

published set could be reduced. However, it is possible that

they may arrive with timestamps that are later than predicted,

3We emit the cases that the timestamp of a predicted message exactly
equals τ(mP) to simplify the presentation of the following proofs. This does
not compromise the generality of our analysis, since we can add (or subtract)
an infinitesimal value to (or from) its timestamp to fit our analysis.

thus disqualifying them from being included in a selected

set, thereby prolonging the passing latency. In this case, the

publishing time tf > α(mL) must hold. For example, in Fig.

3-(d), m3
1 is a predicted message with a timestamp of 21. The

selected set is {m3
1,m

2
2,m

1
3}. Suppose that m2

2 and m3
2 arrive

at Q2, and then m3
1 arrives with a timestamp of 31, as shown in

Fig. 3-(e). Therefore, the published set will be {m2
1,m

2
2,m

1
3},

and we have tf = α(m3
1) > α(mL) = α(m2

2). Actually, if

TB
1 ≥ 4, Algorithm 1 would not wait for m3

1 to arrive.

In both Case 2 and Case 3, the challenge is to identify and

exclude those predicted messages that will not be waited for

(after mL arrives), so that we can reduce the pessimism in

the analysis of passing latency. Below, we first introduce how

to do this by adding constraints on the minimal timestamp

difference TB
j in Lemmas 7 and 8 for Case 2 and Case 3.

Then we analyze how to incorporate these constraints into the

term M for Case 2 (in Lemma 9) and Case 3 (in Lemma 10).

Lemma 6. Let mP be any pivot, and S be a selected set

corresponding to mP. If mj ∈ S is a predicted message in Qj

(j ∈ [1, N ]), then it satisfies:

• τ(mj) > τ(mP), and

• �m′j: τ(mP) < τ(m′j) < τ(mj).

Proof. By line 6 of Algorithm 1, S can only be obtained when

all predicted messages have timestamps later than τ(mP). mj

is a predicted message so τ(mj) > τ(mP) must hold. We

can assume that there exist m′j in Qj such that τ(mP) <

τ(m′j) < τ(mj). Therefore, m′j must be an arrived message

and τ(m′j) − τ(mP) < τ(mj) − τ(mP). We can construct a

regular set S′ with all messages in S, replacing only mj with

m′j . Then, we have Δ(S′) ≤ Δ(S), which contradicts the fact

that S is a selected set. The lemma is proved.

In the following, we analyze the constraints on TB
j under

the context that for any pivot mP, the corresponding published

set SPUB falls into Case 2 or Case 3, mL ∈ SPUB is the latest

arrived message, and S is a selected set obtained by Algorithm

1 not earlier than α(mL).

Lemma 7. If m
ρ(j)
j ∈ S be a predicted message in Qj (j ∈

[1, N ]). Then, TB
j ≤ 2Δ.

Proof. We prove this by contradiction, assuming TB
j > 2Δ.

By Lemma 6, m
ρ(j)−1
j is an arrived message satisfying:

τ(m
ρ(j)−1
j ) ≤ τ(mP) (3)

Since SPUB falls into Case 2 or Case 3, the published message

(it must be an arrived message) m
ρ(j)−x
j ∈ SPUB (x ∈ N+)

must satisfy:

τ(mP)−Δ ≤ τ(m
ρ(j)−x
j ) ≤ τ(m

ρ(j)−1
j ) (4)

The predicted message m
ρ(j)
j has a timestamp τ(m

ρ(j)
j ) =

τ(m
ρ(j)−1
j ) + TB

j . Combining it with (4) and (3), we have

τ(m
ρ(j)
j )− τ(mP) > Δ. Therefore, any regular set containing

m
ρ(j)
j and mP will have a time disparity greater than Δ. Since
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S is obtained not earlier than α(mL), there must exist a regular

set that contains only arrived messages (which actually is the

published set for mP) and it has a time disparity less than Δ.

So, the synchronizer will not wait for m
ρ(j)
j to arrive in any

case, i.e., m
ρ(j)
j can not be included in the selected set S,

which contradicts the prerequisite m
ρ(j)
j ∈ S. Therefore, our

assumption is incorrect and TB
j ≤ 2Δ must hold.

Lemma 7 states that in both Case 2 and Case 3, the selected

set obtained not earlier than α(mL) for a given pivot can

only include the predicted messages from the non-pivot queue

Qj that satisfies the condition TB
j ≤ 2Δ. These predicted

messages will be waited to arrive until the publishing time. It

is noted that the above condition is necessary but not sufficient.

Lemma 8. If m
ρ(j)
j ∈ S be a predicted message in Qj (j ∈

[1, N ]) and Δ ≤ TB
j ≤ 2Δ, τ(m

ρ(j)−1
j ) must satisfy4:

τ(m
ρ(j)−1
j ) ≤ τ(mP) + Δ− TB

j (5)

Proof. Since the predicted message m
ρ(j)
j is included in S,

τ(m
ρ(j)
j )− τ(mP) must not be large than Δ, i.e., τ(m

ρ(j)
j ) ≤

τ(mP) + Δ. Since τ(m
ρ(j)
j ) ≥ τ(m

ρ(j)−1
j ) + TB

j , we have

τ(m
ρ(j)−1
j ) ≤ τ(mP) + Δ− TB

j . Proved.

Lemma 8 reveals that for any pivot, when Δ ≤ TB
j ≤ 2Δ,

the predicted messages in Qj can be included into a selected

set and then be waited for arrival before the selected set for

this pivot can be published, but only if the condition specified

in Eq. (5) is satisfied.

To derive the upper bound for Case 2 and Case 3, we first

introduce some auxiliary notations. For any pivot mP, the time

disparity of its published set is upper-bounded by Δ. We define

two sets for the queue index j:

φ1 =
{
j|j ∈ [1, N ] ∧ 0 < TB

j < Δ
}

φ2 =
{
j|j ∈ [1, N ] ∧Δ ≤ TB

j ≤ 2Δ
}

Lemma 9. Let SPUB be any arbitrary published set and mP ∈
SPUB be the pivot. If SPUB falls into Case 2, the passing

latency experienced by m
ρ(i)
i ∈ SPUB is upper-bounded by

U2
p = Δ+M2 −DB

i (6)

where

M2 = max
{
M1

2,M
2
2

}

M1
2 = max

j∈φ1

{
TW
j +DW

j

}

M2
2 = max

j∈φ2

{
Δ− TB

j + TW
j +DW

j

}

Proof. Suppose that before publishing SPUB, m
ρ(j)
j (j ∈

[1, N ]) be the first message, that arrives in Qj , with a times-

tamp of τ(m
ρ(j)
j ) > τ(mP). By Lemma 7, the synchronizer

4Of course, there exists a minimal limit as well, i.e., τ(m
ρ(j)−1
j

) >

τ(mP)−Δ. However, our focus here lies on the maximum limit.

waits for m
ρ(j)
j to arrive only if TB

j ≤ 2Δ. When j ∈ φ2, by

Lemma 8, the message m
ρ(j)−1
j has a maximum timestamp

value of τ(m
ρ(j)−1
j ) = τ(mP) + Δ − TB

j . Therefore, the

timestamp of m
ρ(j)
j (when it arrives) must satisfy

τ(m
ρ(j)
j ) ≤ τ(mP) + Δ− TB

j + TW
j (7)

When j ∈ φ1, the message m
ρ(j)−1
j has a timestamp not later

than τ(mP). In the worst case, we have

τ(m
ρ(j)
j ) ≤ τ(mP) + TW

j (8)

Suppose m
ρ(h)
h (h ∈ φ1 ∪ φ2) be the first message with a

timestamp larger than τ(mP) in Qh, and let it be the last one

to arrive among all such messages in the queues. Based on

Eqs. (7) and (8), we can derive

tf − α(m
ρ(i)
i ) ≤ α(m

ρ(h)
h )− α(m

ρ(i)
i )

≤ (τ(m
ρ(h)
h ) +DW

h )− (τ(m
ρ(i)
i ) +DB

i )

= (τ(mP)− τ(m
ρ(i)
i )) + (τ(m

ρ(h)
h )− τ(mP)) +DW

h −DB
i

≤ Δ+max
{
M1

2,M
2
2

}
−DB

i

Proved.

Lemma 10. Let SPUB be any arbitrary published set and

mP ∈ SPUB be the pivot. If SPUB falls into Case 3, the

passing latency experienced by m
ρ(i)
i ∈ SPUB is upper-

bounded by

U2
p = Δ+M2 −DB

i

Proof. Let m
ρ(j)
j (j ∈ [1, N ]) be the first message that arrives

in Qj before publishing SPUB and τ(m
ρ(j)
j ) > τ(mP). Let

τ(mP) + σ (0 < σ < Δ) be the timestamp of the published

message that has the latest timestamp among all messages in

SPUB. By Lemma 7, TB
j ≤ 2Δ must hold. Similarly, we

have τ(m
ρ(j)
j ) ≤ τ(mP) + Δ − TB

j + TW
j if j ∈ φ2. And

we have τ(m
ρ(j)
j ) ≤ τ(mP) + TW

j if j ∈ φ1. Suppose m
ρ(h)
h

(h ∈ φ1 ∪ φ2) is the first message with a timestamp larger

than τ(mP) in Qh, and let it be the last one to arrive among

all such messages in the queues. We have

tf − α(m
ρ(i)
i ) ≤ α(m

ρ(h)
h )− α(m

ρ(i)
i )

≤ (τ(m
ρ(h)
h ) +DW

h )− (τ(m
ρ(i)
i ) +DB

i )

= (τ(mP) + σ − τ(m
ρ(i)
i )) + (τ(m

ρ(h)
h )− τ(mP)− σ

+DW
h )−DB

i

≤ Δ+max
{
M1

2 − σ,M2
2 − σ

}
−DB

i

< Δ+M2 −DB
i

In conclusion, the lemma is proved.

Theorem 2 (Passing Latency Upper Bound 2). Let SPUB be

any arbitrary published set. The passing latency experienced

by m
ρ(i)
i ∈ SPUB is upper-bounded by

Up = max
{
U1
p ,U

2
p

}
(9)
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Fig. 5: Illustration of the continuous published sets.

where U1
p and U2

p are defined in Eqs. (2) and (6), respectively.

Proof. The published set SPUB must fall into one of the

three cases, i.e., Case 1, Case 2, or Case 3. The upper

bound of the passing latency can be obtained by choosing

the maximum upper bound among the three cases. Thus, we

reach the conclusion.

V. REACTION LATENCY UPPER BOUND ANALYSIS

This section analyzes the upper bound of the reaction

latency for a published message m
ρ(i)
i included in SPUB.

We say two messages m
ρ(i)
i and m

ρ(i)+1
i that both are from

the same queue Qi (i ∈ [1, N ]) are continuous. Accordingly,

we present the definition of continuous published sets:

Definition 8 (Continuous Published Sets). Let SPUB
1 and

SPUB
2 be any two different published sets. Without loss of

generality, suppose SPUB
1 is outputted before SPUB

2 . SPUB
1

and SPUB
2 are continuous iff: ∃m

ρ(i)
i ∈ SPUB

1 ∧ m
ρ(i)+1
i ∈

SPUB
2 (i ∈ [1, N ]), m

ρ(i)
i and m

ρ(i)+1
i are continuous.

For example, as shown in Fig. 5, the first published set

is SPUB
1 = {m1

1,m
1
2,m

1
3} and the second published set is

SPUB
2 = {m4

1,m
3
2,m

2
3}. SPUB

1 and SPUB
2 are continuous

since m1
3 ∈ SPUB

1 and m2
3 ∈ SPUB

2 are continuous.

Below, we first drive an upper bound for the time interval

between the arrivals of two published messages that are in

the same queue and included in two continuous published sets

(Lemma 12). Then, we derive the upper bound for the reaction

latency in Theorem 3.

Lemma 11. Any two published sets SPUB
1 and SPUB

2 , which

are sequentially published by Algorithm 1, are continuous.

Proof. Suppose that SPUB
2 is published after SPUB

1 . By Al-

gorithm 1 Line 10-11, when publishing SPUB
1 , each message

mj ∈ SPUB
1 and all messages before mj will be discarded

from Qj . After publishing SPUB
1 , there must be no discarded

message after mj before publishing SPUB
2 (since no message

overflow occurs and messages can only be discarded by Line

10-11 of Algorithm 1). Then, a new pivot (it must be included

in SPUB
2 ) will be selected for SPUB

2 among the arrived

messages, each of which must have the earliest timestamp in

the corresponding queue. And, each of these messages must

be continuous to the published message in the corresponding

queue, which is included in SPUB
1 . Therefore, the new pivot

of SPUB
2 , which is one of these messages, must be continuous

to a published message included in SPUB
1 . By Definition 8,

SPUB
1 and SPUB

2 must be continuous.

Lemma 12. Let SPUB
1 and SPUB

2 be any two published sets

(SPUB
2 is published immediately after SPUB

1 ), and m
ρ(i)−x
i ∈

SPUB
1 (x ∈ N+) and m

ρ(i)
i ∈ SPUB

2 . The latency α(m
ρ(i)
i )−

α(m
ρ(i)−x
i ) is upper-bounded by:

Ud = 2Δ+ TW
max +DW

i −DB
i (10)

where

TW
max = max

j∈[1,N ]

{
TW
j

}

Proof. According to Lemma 11, SPUB
1 and SPUB

2 must be

continuous. Hence, there must exist two continuous messages

m
ρ(h)−1
h ∈ SPUB

1 and m
ρ(h)
h ∈ SPUB

2 (h ∈ [1, N ]). Hence,

we have

τ(m
ρ(h)
h )− τ(m

ρ(h)−1
h ) ≤ TW

h ≤ TW
max

In the worst case, m
ρ(i)−x
i is the one with the earliest

timestamp among all messages in SPUB
1 , and m

ρ(i)
i is the

one with the latest timestamp among all messages in SPUB
2 .

Therefore, we can know τ(m
ρ(i)
i ) − τ(m

ρ(h)
h ) ≤ Δ and

τ(m
ρ(h)−1
h )−τ(m

ρ(i)−x
i ) ≤ Δ. Combining the above inequal-

ities, we have

τ(m
ρ(i)
i )− τ(m

ρ(i)−x
i ) ≤ 2Δ + TW

max

Then, we can derive

α(m
ρ(i)
i )− α(m

ρ(i)−x
i )

≤ (τ(m
ρ(i)
i ) +DW

i )− (τ(m
ρ(i)−x
i ) +DB

i )

≤ 2Δ + TW
max +DW

i −DB
i

The lemma is proved.

Theorem 3 (Reaction Latency Upper Bound). Suppose that

SPUB is published at time tf , m
ρ(i)
i ∈ SPUB, and m

ρ(i)−x
i

(x ∈ N+) is the last message before m
ρ(i)
i that was selected

into a published set. The reaction latency of a message m
ρ(i)
i

is upper-bounded by Up + Ud, where Up and Ud are defined

in Eqs. (9) and (10), respectively.

Proof. By Definition 2, the reaction latency of m
ρ(i)
i is

tf−α(m
ρ(i)−x
i ) = {tf−α(m

ρ(i)
i )}+{α(m

ρ(i)
i )−α(m

ρ(i)−x
i )}

where tf − α(m
ρ(i)
i ) and α(m

ρ(i)
i ) − α(m

ρ(i)−x
i ) are upper-

bounded by Up and Ud, respectively. The theorem is proved.

VI. EXPERIMENTS

We conducted a series of experiments to evaluate the preci-

sion of our latency analysis (Theorem 1, 2 and 3), including

both passing latency and reaction latency. All experiments

were conducted on a desktop computer with an Intel(R)

Core(TM) i7-10700 CPU running at 2.90GHz. The computer

was installed with ROS 2, specifically the Humble Hawksbill

version running on Ubuntu 20.04.4 LTS. The source code is

available at https://github.com/ruoxianglee/ latency analysis.
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(a) (b) (c) (d)

Fig. 6: Passing latency evaluation results.

(a) (b) (c) (d)

Fig. 7: Reaction latency evaluation results.

A. Experiment Setting

We perform experiments in real execution in ROS. To ensure

precise evaluation of the timing behavior of messages, we

propose a new timing data structure (as shown in Table I) for

message tracing. This structure can be directly integrated into

the pre-existing message types in ROS. It contains the message

timestamp, arrival time, and publishing time. The assignment

of the message timestamp occurs during the message genera-

tion process in the sensor data sampling task. The synchronizer

assigns the arrival time to each incoming message upon its

arrival and a publishing time to each message in the published

set once the set is selected and ready for output. Based on the

above timing information, we can trace messages received by

the synchronizer, thereby enabling us to observe and analyze

the passing latency and the reaction latency.

We run experiments to evaluate the latency experienced by

messages in the synchronizer using artificial input messages

generated by timers. The case-study system involves up to

9 timer callbacks, which can be configured, and a message

synchronizer. Each timer can be configured with minimal and

maximum timestamp difference (TB
i and TW

i ) for artificial

input message generation. Our objective is to observe the

passing latency and the reaction latency for the messages that

pass through the synchronizer. Therefore, to ensure accurate

results, we have designed the case-study system as simple as

possible, excluding other callbacks. Additionally, we employ

a dedicated single-threaded executor for each timer callback

and the synchronizer. With the above design, we can minimize

any potential interference among callbacks caused by the ROS

executor scheduling. In this system, we can configure the delay

time experienced by each message before it arrives at the

synchronizer, which helps us evaluate the performance of the

synchronizer under different settings.

TABLE I: Timing Data Structure

Name Type Description

timestamp builtin_interfaces/Time Data sampling time

arrival time builtin_interfaces/Time Message arrival time

publishing time builtin_interfaces/Time Message publishing time

B. Latency Evaluation

We evaluate both passing latency and reaction latency with

different settings, including the different number of input

channels (from 3 to 9, as currently the ROS Message Filter

supports up to 9 input channels), the ratio between TW
i

andTB
i (chosen between 1 and 1.8), and different delay time

before messages arrive at the synchronizer (chosen between

0 and 40 ms). In each experiment (which is corresponding

to each x-value in Fig. 6 and 7), we record the worst-case

latency among 5000 observations. Each point (in Fig. 6 and

7) corresponds to 100 experiments. The value of each point is

determined by computing an average of the recorded worst-

case latencies of all these 100 experiments. We conducted mul-

tiple experiments for each point because only one experiment

with a specific setting is not representative. Therefore, different

experiments with different settings are performed to guarantee

the evaluation’s generality.

We compare the values of Upper Bound 1, Upper Bound 2

and Observed for the passing latency (Fig. 6-(a) to (d)), and

the values of Upper Bound and Observed for the reaction

latency (Fig. 7-(a) to (d)). These parameters are defined:

• Upper Bound 1: the first passing latency upper bound

calculated by Eq. (1) in Theorem 1.

• Upper Bound 2: the second passing latency upper bound

calculated by Eq. (9) in Theorem 2.

• Upper Bound: the reaction latency upper bound in

Theorem 3.

• Observed: the maximum observed passing latency or

reaction latency in real execution.

For the passing latency evaluation, Fig. 6-(a) shows the

experiment results under the different number of channels

(x-axis), where messages of each channel were generated

periodically (i.e., TB
i = TW

i ) with period randomly distributed

in [50, 100] and delay randomly distributed in [1, 40]. While

it is possible to show the values of Upper Bound 1, Upper

Bound 2, and Observed for all channels in each setting, we

only illustrate the results for the first channel in Fig. 6-(a)

(as well as in Fig. 6-(c) and (d)). However, we can certainly
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reach the same evaluation conclusion for all other channels.

To further demonstrate this, we also illustrate the results of all

six channels in Fig. 6-(b) as an example, where we use the

same setting as Fig. 6-(a), except that the number of channels

was kept constant at 6. In Fig. 6-(c), the messages are no

longer generated periodically, but with timestamp separation

randomly distributed between TB
i and TW

i , and the ratio

between TW
i and TB

i varies as indicated by the x-axis. In

Fig. 6-(d), we use the same setting as in Fig. 6-(a), but set

the number of channels to 6 and change the range of delay

experienced by each message as shown by the x-axis.

For the reaction latency evaluation, we use the same setting

in Fig. 7-(a), (b), (c) and (d) as Fig. 6-(a), (b), (c) and (d),

respectively. Again, we only illustrate the results (values of

Upper Bound and Observed) for the first channel in Fig. 7-

(a) (as well as in Fig. 7-(c) and (d)). And an example with the

results of all six channels is illustrated in Fig. 7-(b).

From the experiment results in Fig. 6-(a) to (d), we can

see that our upper bounds for the passing latency (Theorem

1 and 2) have good precision. As depicted in Fig. 6-(c), as

the ratio between TW
i and TB

i increases, particularly at ratios

of 1.6 and 1.8), the difference between Upper Bound 1 and

Upper Bound 2 becomes negligible. The reason is that as the

ratio increases, it exacerbates the difference between TB
i and

TW
i . Since Δ is calculated based on TW

i , TB
i > Δ can always

hold, and the constraints introduced in the second upper bound

for the passing latency become invalid. From the experiment

results (Fig. 7-(a) to (d)), we can know that our upper bound

for the reaction latency (Theorem 3) has a certain level of

pessimism. Further analysis and refinement may be necessary

to assess the upper bound accurately.

Based on the experiment results, we can observe that the

synchronization policy can produce considerable latency. As

illustrated in Fig. 6-(a), (c), and (d), the passing latency

increases as the number of channels, the ratio between TW
i

and TB
i , or the range of delay experienced by each message

before arriving at the synchronizer becomes larger, in terms of

Upper Bound 1, Upper Bound 2 and Observed. As shown

in Fig. 6-(b), the passing latency is almost the same across

different channels, in terms of Upper Bound 1, Upper Bound

2 and Observed. For the reaction latency, we can reach the

same conclusion based on Fig. 7-(a) to (d).

VII. RELATED WORK

Data fusion algorithms are commonly developed with the

assumption that data from multiple sensors are perfectly

aligned, although this is rarely the case in reality. To address

this issue, various techniques have been proposed to compen-

sate for the temporal inconsistency of input data [30]–[33],

which only work when the temporal inconsistency falls within

a certain range. Message synchronization before data fusion

is a crucial component that warrants careful consideration

and attention. Previous studies [2], [34]–[36] have focused on

precisely timestamping sensor data in the context of multi-

sensor data fusion. In this paper, we assume that sensor data

has already been associated with valid timestamps in the same

coordinate system using these existing techniques. Our focus is

on the problem that arises after timestamping, i.e., the latency

caused when managing the sensor data flows in the computing

system based on these timestamps.

In recent years, some work has been conducted on formal

real-time performance analysis of ROS2, such as exploring

response time analysis by modeling execution of ROS2 ap-

plications as processing chains or a DAG [16], [17], [20],

[22], [24] executing on the ROS2 default scheduler, i.e.,

the executor. [18], [21], [23], [24] proposed to address the

limitations of the default scheduling strategy of ROS2 by

enhancing or redesigning the executor. In [19], the authors

propose an automatic latency manager that applies existing

real-time scheduling theory to latency control of critical call-

back chains in ROS2 applications. [14] proposed an end-to-end

timing analysis for cause-effect chains in ROS2, considering

the maximum end-to-end reaction time and maximum data age

metrics. However, all of the research mentioned above focuses

solely on the executor component in ROS2 only for the end-

to-end latency (response time) analysis without considering

the Message Synchronizer. [37] proposed a synchronization

system implemented in a node to harmonize communication

between nodes, which works similarly to the message syn-

chronization policy in ROS. Recent work [3], [7] modeled the

message synchronization policy in ROS and formally analyzed

the worst-case time disparity of the output message set as

well as the important properties of the policy. However, their

analysis only focuses on the time disparity metric and neglects

to consider the latency caused by the policy, which is closely

tied to end-to-end latency and is a critical factor in the reaction

time of the system as a whole.

Previous research on real-time scheduling and analysis has

investigated various real-time performance metrics, including

response time [38], [39], tardiness [40] and data freshness

[10]–[13], [41]. However, these analysis techniques cannot

be directly applied to ROS systems. Furthermore, analyzing

latency associated with the message synchronization policy in

ROS remains an open research question.

VIII. CONCLUSION

In this paper, we explore two types of latency metrics asso-

ciated with the ROS message synchronization policy, i.e., the

passing latency and the reaction latency, and formally analyze

the upper bounds for both latency. We conduct experiments

under different settings, including the different number of

channels, the varied data sampling periods, and the random

delay time experienced by messages before arriving at the syn-

chronization policy, to evaluate the precision of our proposed

latency upper bounds against the maximal observed latency in

real execution. In the future, we plan to improve the design and

implementation of the ROS message synchronization policy,

considering both the time disparity and latency aspects, with

the ultimate goal of achieving better real-time performance in

ROS systems.
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